Active Learning Literature Survey

Burr Settles

Computer Sciences Technical Report 1648
University of Wisconsin—Madison
Updated on: January 26, 2010

Abstract

The key idea behind active learning is that a machine learning algorithm can
achieve greater accuracy with fewer training labels if it is allowed to choose the
data from which it learns. An active learner may pose gueries, usually in the form
of unlabeled data instances to be labeled by an oracle (e.g., a human annotator).
Active learning is well-motivated in many modern machine learning problems,
where unlabeled data may be abundant or easily obtained, but labels are difficult,
time-consuming, or expensive to obtain.

This report provides a general introduction to active learning and a survey of
the literature. This includes a discussion of the scenarios in which queries can
be formulated, and an overview of the query strategy frameworks proposed in
the literature to date. An analysis of the empirical and theoretical evidence for
successful active learning, a summary of problem setting variants and practical
issues, and a discussion of related topics in machine learning research are also
presented.

Contents

1

Introduction

1.1 Whatis Active Learning?
1.2 Active Learning Examples
1.3 FurtherReading

Scenarios

2.1 Membership Query Synthesis
2.2 Stream-Based Selective Sampling
2.3 Pool-Based Sampling L.

Query Strategy Frameworks

3.1 Uncertainty Sampling
3.2 Query-By-Committee
3.3 Expected Model Change
3.4 Expected Error Reduction. 0oL
3.5 Variance Reduction,
3.6 Density-Weighted Methods

Analysis of Active Learning
4.1 Empirical Analysis oo
4.2 Theoretical Analysis

Problem Setting Variants

5.1 Active Learning for Structured Outputs
5.2 Active Feature Acquisition and Classification
5.3 Active Class Selection
54 ActiveClustering e

Practical Considerations

6.1 Batch-Mode Active Learning
6.2 NoisyOracles
6.3 Variable Labeling Costs
6.4 Alternative Query Types
6.5 Multi-Task Active Learning
6.6 Changing (or Unknown) Model Classes
6.7 Stopping Criteria e

12
12
15
18
19
21
25

26
27
28

30
30
32
33
33

7 Related Research Areas

7.1 Semi-Supervised Learning
7.2 Reinforcement Learning
7.3 Submodular Optimization
7.4 Equivalence Query Learning . . .

7.5 Model Parroting and Compression
8 Conclusion and Final Thoughts

Bibliography

44
44
45
46
47
47

48

49

1 Introduction

This report provides a general review of the literature on active learning. There
have been a host of algorithms and applications for learning with queries over
the years, and this document is an attempt to distill the core ideas, methods, and
applications that have been considered by the machine learning community. To
make this survey more useful in the long term, an online version will be updated
and maintained indefinitely at:

http://active-learning.net/

When referring to this document, I recommend using the following citation:

Burr Settles. Active Learning Literature Survey. Computer Sciences Tech-
nical Report 1648, University of Wisconsin—-Madison. 2009.

An appropriate BIBTEX entry is:

@techreport{settles.tr09,
Author = {Burr Settles},
Institution = {University of Wisconsin--Madison},
Number = {16487},
Title = {Active Learning Literature Survey},
Type = {Computer Sciences Technical Report},
Year = {2009},

}

This document is written for a machine learning audience, and assumes the reader
has a working knowledge of supervised learning algorithms (particularly statisti-
cal methods). For a good introduction to general machine learning, I recommend
Mitchell (1997) or Duda et al. (2001). I have strived to make this review as com-
prehensive as possible, but it is by no means complete. My own research deals pri-
marily with applications in natural language processing and bioinformatics, thus
much of the empirical active learning work I am familiar with is in these areas.
Active learning (like so many subfields in computer science) is rapidly growing
and evolving in a myriad of directions, so it is difficult for one person to provide
an exhaustive summary. I apologize for any oversights or inaccuracies, and en-
courage interested readers to submit additions, comments, and corrections to me
at: bsettles@cs.cmu.edu.

http://active-learning.net/
mailto:bsettles@cs.cmu.edu

1.1 What is Active Learning?

Active learning (sometimes called “query learning” or “optimal experimental de-
sign” in the statistics literature) is a subfield of machine learning and, more gener-
ally, artificial intelligence. The key hypothesis is that if the learning algorithm is
allowed to choose the data from which it learns—to be “curious,” if you will—it
will perform better with less training. Why is this a desirable property for learning
algorithms to have? Consider that, for any supervised learning system to perform
well, it must often be trained on hundreds (even thousands) of labeled instances.
Sometimes these labels come at little or no cost, such as the the “spam” flag you
mark on unwanted email messages, or the five-star rating you might give to films
on a social networking website. Learning systems use these flags and ratings to
better filter your junk email and suggest movies you might enjoy. In these cases
you provide such labels for free, but for many other more sophisticated supervised
learning tasks, labeled instances are very difficult, time-consuming, or expensive
to obtain. Here are a few examples:

e Speech recognition. Accurate labeling of speech utterances is extremely
time consuming and requires trained linguists. Zhu (2005a) reports that
annotation at the word level can take ten times longer than the actual au-
dio (e.g., one minute of speech takes ten minutes to label), and annotating
phonemes can take 400 times as long (e.g., nearly seven hours). The prob-
lem is compounded for rare languages or dialects.

e [nformation extraction. Good information extraction systems must be trained
using labeled documents with detailed annotations. Users highlight entities
or relations of interest in text, such as person and organization names, or
whether a person works for a particular organization. Locating entities and
relations can take a half-hour or more for even simple newswire stories (Set-
tles et al., 2008a). Annotations for other knowledge domains may require
additional expertise, e.g., annotating gene and disease mentions for biomed-
ical information extraction usually requires PhD-level biologists.

o Classification and filtering. Learning to classify documents (e.g., articles
or web pages) or any other kind of media (e.g., image, audio, and video
files) requires that users label each document or media file with particular
labels, like “relevant” or “not relevant.” Having to annotate thousands of
these instances can be tedious and even redundant.

Active learning systems attempt to overcome the labeling bottleneck by asking
queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human
annotator). In this way, the active learner aims to achieve high accuracy using
as few labeled instances as possible, thereby minimizing the cost of obtaining
labeled data. Active learning is well-motivated in many modern machine learning
problems where data may be abundant but labels are scarce or expensive to obtain.
Note that this kind of active learning is related in spirit, though not to be confused,
with the family of instructional techniques by the same name in the education
literature (Bonwell and Eison, 1991).

1.2 Active Learning Examples

learn a mode/ machine learning

model

labeled
training set

-

Figure 1: The pool-based active learning cycle.

unlabeled pool

U

&)

select queries
oracle (e.g., human annotator) q

There are several scenarios in which active learners may pose queries, and
there are also several different query strategies that have been used to decide which
instances are most informative. In this section, I present two illustrative examples
in the pool-based active learning setting (in which queries are selected from a
large pool of unlabeled instances /) using an uncertainty sampling query strategy
(which selects the instance in the pool about which the model is least certain how
to label). Sections 2 and 3 describe all the active learning scenarios and query
strategy frameworks in more detail.

3 ; 3 3
N
2+ A% A Aa, A 2+ 2
adapa 4

1h ‘u‘:‘“ :::‘ ot 1

of 4a 2 g4 of ol
s, a,

oRs ik VIV P A
W tha

2| SR a4 a2t 2t

3 L L L L L 3 . 3

4 -2 0 2 4 -4 -2 2 4

0
(@) (b)

Figure 2: An illustrative example of pool-based active learning. (a) A toy data set of
400 instances, evenly sampled from two class Gaussians. The instances are
represented as points in a 2D feature space. (b) A logistic regression model
trained with 30 labeled instances randomly drawn from the problem domain.
The line represents the decision boundary of the classifier (70% accuracy). (c)
A logistic regression model trained with 30 actively queried instances using
uncertainty sampling (90%).

Figure 1 illustrates the pool-based active learning cycle. A learner may begin
with a small number of instances in the labeled training set £, request labels for
one or more carefully selected instances, learn from the query results, and then
leverage its new knowledge to choose which instances to query next. Once a
query has been made, there are usually no additional assumptions on the part of
the learning algorithm. The new labeled instance is simply added to the labeled
set £, and the learner proceeds from there in a standard supervised way. There are
a few exceptions to this, such as when the learner is allowed to make alternative
types of queries (Section 6.4), or when active learning is combined with semi-
supervised learning (Section 7.1).

Figure 2 shows the potential of active learning in a way that is easy to visu-
alize. This is a toy data set generated from two Gaussians centered at (-2,0) and
(2,0) with standard deviation o = 1, each representing a different class distribu-
tion. Figure 2(a) shows the resulting data set after 400 instances are sampled (200
from each class); instances are represented as points in a 2D feature space. In
a real-world setting these instances may be available, but their labels usually are
not. Figure 2(b) illustrates the traditional supervised learning approach after ran-
domly selecting 30 instances for labeling, drawn 1.1.d. from the unlabeled pool U/.
The line shows the linear decision boundary of a logistic regression model (i.e.,
where the posterior equals 0.5) trained using these 30 points. Notice that most
of the labeled instances in this training set are far from zero on the horizontal

accuracy

uncertainty sampling ——

random
0‘5 I I I 1

0 20 40 60 80 100
number of instance queries

Figure 3: Learning curves for text classification: baseball vs. hockey. Curves plot clas-
sification accuracy as a function of the number of documents queried for two se-
lection strategies: uncertainty sampling (active learning) and random sampling
(passive learning). We can see that the active learning approach is superior here
because its learning curve dominates that of random sampling.

axis, which is where the Bayes optimal decision boundary should probably be.
As a result, this classifier only achieves 70% accuracy on the remaining unlabeled
points. Figure 2(c), however, tells a different story. The active learner uses uncer-
tainty sampling to focus on instances closest to its decision boundary, assuming it
can adequately explain those in other parts of the input space characterized by U/.
As a result, it avoids requesting labels for redundant or irrelevant instances, and
achieves 90% accuracy with a mere 30 labeled instances.

Now let us consider active learning for a real-world learning task: text classifi-
cation. In this example, a learner must distinguish between baseball and hockey
documents from the 20 Newsgroups corpus (Lang, 1995), which consists of 2,000
Usenet documents evenly divided between the two classes. Active learning al-
gorithms are generally evaluated by constructing learning curves, which plot the
evaluation measure of interest (e.g., accuracy) as a function of the number of
new instance queries that are labeled and added to £. Figure 3 presents learning
curves for the first 100 instances labeled using uncertainty sampling and random

sampling. The reported results are for a logistic regression model averaged over
ten folds using cross-validation. After labeling 30 new instances, the accuracy of
uncertainty sampling is 81%, while the random baseline is only 73%. As can be
seen, the active learning curve dominates the baseline curve for all of the points
shown in this figure. We can conclude that an active learning algorithm is superior
to some other approach (e.g., a random baseline like traditional passive supervised
learning) if it dominates the other for most or all of the points along their learning
curves.

1.3 Further Reading

This is the first large-scale survey of the active learning literature. One way to view
this document is as a heavily annotated bibliography of the field, and the citations
within a particular section or subsection of interest serve as good starting points
for further investigation. There have also been a few PhD theses over the years
dedicated to active learning, with rich related work sections. In fact, this report
originated as a chapter in my PhD thesis (Settles, 2008), which focuses on active
learning with structured instances and potentially varied annotation costs. Also of
interest may be the related work chapters of Tong (2001), which considers active
learning for support vector machines and Bayesian networks, Monteleoni (2006),
which considers more theoretical aspects of active learning for classification, and
Olsson (2008), which focuses on active learning for named entity recognition (a
type of information extraction). Fredrick Olsson has also written a survey of active
learning specifically within the scope of the natural language processing (NLP)
literature (Olsson, 2009).

2 Scenarios

There are several different problem scenarios in which the learner may be able
to ask queries. The three main settings that have been considered in the litera-
ture are (i) membership query synthesis, (ii) stream-based selective sampling, and
(ii1) pool-based sampling. Figure 4 illustrates the differences among these three
scenarios, which are explained in more detail in this section. Note that all these
scenarios (and the lion’s share of active learning work to date) assume that queries
take the form of unlabeled instances to be labeled by the oracle. Sections 6 and 5
discuss some alternatives to this setting.

membership query synthesis

model generates
a query de novo

stream-based selective sampling

instance Y

it oo - —- sample an___ ® model decides to
S%?g;&:&r;zut instance = query or discard O

pool-based sampling query is labeled
by the oracle
_____ sample a large _ __ _) model selects | |
pool of instances the best query

Figure 4: Diagram illustrating the three main active learning scenarios.

2.1 Membership Query Synthesis

One of the first active learning scenarios to be investigated is learning with mem-
bership queries (Angluin, 1988). In this setting, the learner may request labels
for any unlabeled instance in the input space, including (and typically assuming)
queries that the learner generates de novo, rather than those sampled from some
underlying natural distribution. Efficient query synthesis is often tractable and
efficient for finite problem domains (Angluin, 2001). The idea of synthesizing
queries has also been extended to regression learning tasks, such as learning to
predict the absolute coordinates of a robot hand given the joint angles of its me-
chanical arm as inputs (Cohn et al., 1996).

Query synthesis is reasonable for many problems, but labeling such arbitrary
instances can be awkward if the oracle is a human annotator. For example, Lang
and Baum (1992) employed membership query learning with human oracles to
train a neural network to classify handwritten characters. They encountered an
unexpected problem: many of the query images generated by the learner con-
tained no recognizable symbols, only artificial hybrid characters that had no nat-
ural semantic meaning. Similarly, one could imagine that membership queries
for natural language processing tasks might create streams of text or speech that
amount to gibberish. The stream-based and pool-based scenarios (described in the
next sections) have been proposed to address these limitations.

However, King et al. (2004, 2009) describe an innovative and promising real-
world application of the membership query scenario. They employ a “robot scien-

tist” which can execute a series of autonomous biological experiments to discover
metabolic pathways in the yeast Saccharomyces cerevisiae. Here, an instance is a
mixture of chemical solutions that constitute a growth medium, as well as a partic-
ular yeast mutant. A label, then, is whether or not the mutant thrived in the growth
medium. All experiments are autonomously synthesized using an active learning
approach based on inductive logic programming, and physically performed us-
ing a laboratory robot. This active method results in a three-fold decrease in the
cost of experimental materials compared to naively running the least expensive
experiment, and a 100-fold decrease in cost compared to randomly generated ex-
periments. In domains where labels come not from human annotators, but from
experiments such as this, query synthesis may be a promising direction for auto-
mated scientific discovery.

2.2 Stream-Based Selective Sampling

An alternative to synthesizing queries is selective sampling (Cohn et al., 1990,
1994). The key assumption is that obtaining an unlabeled instance is free (or in-
expensive), so it can first be sampled from the actual distribution, and then the
learner can decide whether or not to request its label. This approach is sometimes
called stream-based or sequential active learning, as each unlabeled instance is
typically drawn one at a time from the data source, and the learner must decide
whether to query or discard it. If the input distribution is uniform, selective sam-
pling may well behave like membership query learning. However, if the distri-
bution is non-uniform and (more importantly) unknown, we are guaranteed that
queries will still be sensible, since they come from a real underlying distribution.

The decision whether or not to query an instance can be framed several ways.
One approach is to evaluate samples using some “informativeness measure” or
“query strategy” (see Section 3 for examples) and make a biased random deci-
sion, such that more informative instances are more likely to be queried (Dagan
and Engelson, 1995). Another approach is to compute an explicit region of uncer-
tainty (Cohn et al., 1994), i.e., the part of the instance space that is still ambiguous
to the learner, and only query instances that fall within it. A naive way of doing
this is to set a minimum threshold on an informativeness measure which defines
the region. Instances whose evaluation is above this threshold are then queried.
Another more principled approach is to define the region that is still unknown to
the overall model class, i.e., to the set of hypotheses consistent with the current la-
beled training set called the version space (Mitchell, 1982). In other words, if any
two models of the same model class (but different parameter settings) agree on all

10

the labeled data, but disagree on some unlabeled instance, then that instance lies
within the region of uncertainty. Calculating this region completely and explicitly
is computationally expensive, however, and it must be maintained after each new
query. As a result, approximations are used in practice (Seung et al., 1992; Cohn
et al., 1994; Dasgupta et al., 2008).

The stream-based scenario has been studied in several real-world tasks, includ-
ing part-of-speech tagging (Dagan and Engelson, 1995), sensor scheduling (Kr-
ishnamurthy, 2002), and learning ranking functions for information retrieval (Yu,
2005). Fujii et al. (1998) employ selective sampling for active learning in word
sense disambiguation, e.g., determining if the word “bank” means land alongside
ariver or a financial institution in a given context (only they study Japanese words
in their work). The approach not only reduces annotation effort, but also limits
the size of the database used in nearest-neighbor learning, which in turn expedites
the classification algorithm.

It is worth noting that some authors (e.g., Thompson et al., 1999; Moskovitch
etal., 2007) use “selective sampling” to refer to the pool-based scenario described
in the next section. Under this interpretation, the term merely signifies that queries
are made with a select set of instances sampled from a real data distribution.
However, in most of the literature selective sampling refers to the stream-based
scenario described here.

2.3 Pool-Based Sampling

For many real-world learning problems, large collections of unlabeled data can be
gathered at once. This motivates pool-based sampling (Lewis and Gale, 1994),
which assumes that there is a small set of labeled data £ and a large pool of un-
labeled data U{ available. Queries are selectively drawn from the pool, which is
usually assumed to be closed (i.e., static or non-changing), although this is not
strictly necessary. Typically, instances are queried in a greedy fashion, according
to an informativeness measure used to evaluate all instances in the pool (or, per-
haps if U is very large, some subsample thereof). The examples from Section 1.2
use this active learning setting.

The pool-based scenario has been studied for many real-world problem do-
mains in machine learning, such as text classification (Lewis and Gale, 1994; Mc-
Callum and Nigam, 1998; Tong and Koller, 2000; Hoi et al., 2006a), information
extraction (Thompson et al., 1999; Settles and Craven, 2008), image classification
and retrieval (Tong and Chang, 2001; Zhang and Chen, 2002), video classification

11

and retrieval (Yan et al., 2003; Hauptmann et al., 2006), speech recognition (Tiir
et al., 2005), and cancer diagnosis (Liu, 2004) to name a few.

The main difference between stream-based and pool-based active learning is
that the former scans through the data sequentially and makes query decisions
individually, whereas the latter evaluates and ranks the entire collection before
selecting the best query. While the pool-based scenario appears to be much more
common among application papers, one can imagine settings where the stream-
based approach is more appropriate. For example, when memory or processing
power may be limited, as with mobile and embedded devices.

3 Query Strategy Frameworks

All active learning scenarios involve evaluating the informativeness of unlabeled
instances, which can either be generated de novo or sampled from a given distribu-
tion. There have been many proposed ways of formulating such query strategies
in the literature. This section provides an overview of the general frameworks that
are used. From this point on, I use the notation 2% to refer to the most informative
instance (i.e., the best query) according to some query selection algorithm A.

3.1 Uncertainty Sampling

Perhaps the simplest and most commonly used query framework is uncertainty
sampling (Lewis and Gale, 1994). In this framework, an active learner queries
the instances about which it is least certain how to label. This approach is often
straightforward for probabilistic learning models. For example, when using a
probabilistic model for binary classification, uncertainty sampling simply queries
the instance whose posterior probability of being positive is nearest 0.5 (Lewis
and Gale, 1994; Lewis and Catlett, 1994).

For problems with three or more class labels, a more general uncertainty sam-
pling variant might query the instance whose prediction is the least confident:

T} = argmax 1 — Py(y|z),

where § = argmax, Py(y|z), or the class label with the highest posterior prob-
ability under the model §. One way to interpret this uncertainty measure is the
expected 0/1-loss, i.e., the model’s belief that it will mislabel z. This sort of strat-
egy has been popular, for example, with statistical sequence models in information

12

extraction tasks (Culotta and McCallum, 2005; Settles and Craven, 2008). This
is because the most likely label sequence (and its associated likelihood) can be
efficiently computed using dynamic programming.

However, the criterion for the least confident strategy only considers informa-
tion about the most probable label. Thus, it effectively “throws away” information
about the remaining label distribution. To correct for this, some researchers use a
different multi-class uncertainty sampling variant called margin sampling (Schef-
fer et al., 2001):

ry = argmin Fy({1]x) — Py(g|x),

where ¢; and ¢ are the first and second most probable class labels under the
model, respectively. Margin sampling aims to correct for a shortcoming in least
confident strategy, by incorporating the posterior of the second most likely la-
bel. Intuitively, instances with large margins are easy, since the classifier has little
doubt in differentiating between the two most likely class labels. Instances with
small margins are more ambiguous, thus knowing the true label would help the
model discriminate more effectively between them. However, for problems with
very large label sets, the margin approach still ignores much of the output distri-
bution for the remaining classes.

A more general uncertainty sampling strategy (and possibly the most popular)
uses entropy (Shannon, 1948) as an uncertainty measure:

T = argmax — Z Py(yi|x) log Py(ys|z),

)

where y; ranges over all possible labelings. Entropy is an information-theoretic
measure that represents the amount of information needed to “encode” a distri-
bution. As such, it is often thought of as a measure of uncertainty or impurity in
machine learning. For binary classification, entropy-based sampling reduces to
the margin and least confident strategies above; in fact all three are equivalent to
querying the instance with a class posterior closest to 0.5. However, the entropy-
based approach generalizes easily to probabilistic multi-label classifiers and prob-
abilistic models for more complex structured instances, such as sequences (Settles
and Craven, 2008) and trees (Hwa, 2004).

Figure 5 visualizes the implicit relationship among these uncertainty mea-
sures. In all cases, the most informative instance would lie at the center of the
triangle, because this represents where the posterior label distribution is most uni-
form (and thus least certain under the model). Similarly, the /east informative
instances are at the three corners, where one of the classes has extremely high

13

(a) least confident (b) margin (c) entropy

Figure 5: Heatmaps illustrating the query behavior of common uncertainty measures in
a three-label classification problem. Simplex corners indicate where one label
has very high probability, with the opposite edge showing the probability range
for the other two classes when that label has very low probability. Simplex
centers represent a uniform posterior distribution. The most informative query
region for each strategy is shown in dark red, radiating from the centers.

probability (and thus little model uncertainty). The main differences lie in the
rest of the probability space. For example, the entropy measure does not favor
instances where only one of the labels is highly unlikely (i.e., along the outer
side edges), because the model is fairly certain that it is not the true label. The
least confident and margin measures, on the other hand, consider such instances
to be useful if the model cannot distinguish between the remaining two classes.
Empirical comparisons of these measures (e.g., Korner and Wrobel, 2006; Schein
and Ungar, 2007; Settles and Craven, 2008) have yielded mixed results, suggest-
ing that the best strategy may be application-dependent (note that all strategies
still generally outperform passive baselines). Intuitively, though, entropy seems
appropriate if the objective function is to minimize log-loss, while the other two
(particularly margin) are more appropriate if we aim to reduce classification error,
since they prefer instances that would help the model better discriminate among
specific classes.

Uncertainty sampling strategies may also be employed with non-probabilistic
classifiers. One of the first works to explore uncertainty sampling used a decision
tree classifier (Lewis and Catlett, 1994). Similar approaches have been applied
to active learning with nearest-neighbor (a.k.a. “memory-based” or “instance-
based”) classifiers (Fujii et al., 1998; Lindenbaum et al., 2004), by allowing each
neighbor to vote on the class label of x, with the proportion of these votes rep-
resenting the posterior label probability. Tong and Koller (2000) also experiment

14

with an uncertainty sampling strategy for support vector machines—or SVMs—
that involves querying the instance closest to the linear decision boundary. This
last approach is analogous to uncertainty sampling with a probabilistic binary lin-
ear classifier, such as logistic regression or naive Bayes.

So far we have only discussed classification tasks, but uncertainty sampling
is also applicable in regression problems (i.e., learning tasks where the output
variable is a continuous value rather than a set of discrete class labels). In this
setting, the learner simply queries the unlabeled instance for which the model has
the highest output variance in its prediction. Under a Gaussian assumption, the
entropy of a random variable is a monotonic function of its variance, so this ap-
proach is very much in same the spirit as entropy-based uncertainty sampling for
classification. Closed-form approximations of output variance can be computed
for a variety of models, including Gaussian random fields (Cressie, 1991) and neu-
ral networks (MacKay, 1992). Active learning for regression problems has a long
history in the statistics literature, generally referred to as optimal experimental
design (Federov, 1972). Such approaches shy away from uncertainty sampling in
lieu of more sophisticated strategies, which we will explore further in Section 3.5.

3.2 Query-By-Committee

Another, more theoretically-motivated query selection framework is the query-
by-committee (QBC) algorithm (Seung et al., 1992). The QBC approach involves
maintaining a committee C = {0V ... 0(“)} of models which are all trained on
the current labeled set £, but represent competing hypotheses. Each committee
member is then allowed to vote on the labelings of query candidates. The most
informative query is considered to be the instance about which they most disagree.

The fundamental premise behind the QBC framework is minimizing the ver-
sion space, which is (as described in Section 2.2) the set of hypotheses that are
consistent with the current labeled training data £. Figure 6 illustrates the con-
cept of version spaces for (a) linear functions and (b) axis-parallel box classifiers
in different binary classification tasks. If we view machine learning as a search
for the “best” model within the version space, then our goal in active learning is
to constrain the size of this space as much as possible (so that the search can be
more precise) with as few labeled instances as possible. This is exactly what QBC
aims to do, by querying in controversial regions of the input space. In order to
implement a QBC selection algorithm, one must:

15

(b)

Figure 6: Version space examples for (a) linear and (b) axis-parallel box classifiers. All
hypotheses are consistent with the labeled training data in £ (as indicated by
shaded polygons), but each represents a different model in the version space.

1. be able to construct a committee of models that represent different regions
of the version space, and

ii. have some measure of disagreement among committee members.

Seung et al. (1992) accomplish the first task simply by sampling a commit-
tee of two random hypotheses that are consistent with £. For generative model
classes, this can be done more generally by randomly sampling an arbitrary num-
ber of models from some posterior distribution P(#|L). For example, McCallum
and Nigam (1998) do this for naive Bayes by using the Dirichlet distribution over
model parameters, whereas Dagan and Engelson (1995) sample hidden Markov
models—or HMMs—by using the Normal distribution. For other model classes,
such as discriminative or non-probabilistic models, Abe and Mamitsuka (1998)
have proposed query-by-boosting and query-by-bagging, which employ the well-
known ensemble learning methods boosting (Freund and Schapire, 1997) and bag-
ging (Breiman, 1996) to construct committees. Melville and Mooney (2004) pro-
pose another ensemble-based method that explicitly encourages diversity among
committee members. Muslea et al. (2000) construct a committee of two models
by partitioning the feature space. There is no general agreement in the literature
on the appropriate committee size to use, which may in fact vary by model class or
application. However, even small committee sizes (e.g., two or three) have been
shown to work well in practice (Seung et al., 1992; McCallum and Nigam, 1998;
Settles and Craven, 2008).

16

For measuring the level of disagreement, two main approaches have been pro-
posed. The first is vote entropy (Dagan and Engelson, 1995):

V(yi) V(yi)
* = — l
Typ arginax E C 0g C

%

where y; again ranges over all possible labelings, and V' (y;) is the number of
“votes” that a label receives from among the committee members’ predictions,
and C' is the committee size. This can be thought of as a QBC generalization of
entropy-based uncertainty sampling. Another disagreement measure that has been
proposed is average Kullback-Leibler (KL) divergence (McCallum and Nigam,
1998):

C
. 1
T = arginaxa ;D(P(,(c) Pe),
where: Pyo (ui]2)
e \Yi|T
D P(C) P = P(c) Y; | T 10g9—.

Here 0() represents a particular model in the committee, and C represents the com-
mittee as a whole, thus Pe(y;|2z) = & S | Pyoy (yi]) is the “consensus” proba-
bility that y; is the correct label. KL divergence (Kullback and Leibler, 1951) is
an information-theoretic measure of the difference between two probability dis-
tributions. So this disagreement measure considers the most informative query
to be the one with the largest average difference between the label distributions
of any one committee member and the consensus. Other information-theoretic
approaches like Jensen-Shannon divergence have also been used to measure dis-
agreement (Melville et al., 2005), as well as the other uncertainty sampling mea-
sures discussed in Section 3.1, by pooling the model predictions to estimate class
posteriors (Korner and Wrobel, 2006). Note also that in the equations above, such
posterior estimates are based on committee members that cast “hard” votes for
their respective label predictions. They might also cast “soft” votes using their
posterior label probabilities, which in turn could be weighted by an estimate of
each committee member’s accuracy.

Aside from the QBC framework, several other query strategies attempt to min-
imize the version space as well. For example, Cohn et al. (1994) describe a selec-
tive sampling algorithm that uses a committee of two neural networks, the “most
specific” and “most general” models, which lie at two extremes the version space
given the current training set £. Tong and Koller (2000) propose a pool-based

17

margin strategy for SVMs which, as it turns out, attempts to minimize the version
space directly. The membership query algorithms of Angluin (1988) and King
et al. (2004) can also be interpreted as synthesizing instances de novo that most
constrain the size of the version space. However, Haussler (1994) shows that the
size of the version space can grow exponentially with the size of £. This means
that, in general, the version space of an arbitrary model class cannot be explicitly
represented in practice. The QBC framework, rather, uses a committee to serve as
a subset approximation.

QBC can also be employed in regression settings, i.e., by measuring disagree-
ment as the variance among the committee members’ output predictions (Bur-
bidge et al., 2007). Note, however, that there is no notion of “version space” for
models that produce continuous outputs, so the interpretation of QBC in regres-
sion settings is a bit different. We can think of £ as constraining the posterior joint
probability of predicted output variables and the model parameters, P(Y,0|L)
(note that this applies for both regression and classification tasks). By integrating
over a set of hypotheses and identifying queries that lie in controversial regions of
the instance space, the learner attempts to collect data that reduces variance over
both the output predictions and the parameters of the model itself (as opposed
to uncertainty sampling, which focuses only on the output variance of a single
hypothesis).

3.3 Expected Model Change

Another general active learning framework uses a decision-theoretic approach, se-
lecting the instance that would impart the greatest change to the current model if
we knew its label. An example query strategy in this framework is the “expected
gradient length” (EGL) approach for discriminative probabilistic model classes.
This strategy was introduced by Settles et al. (2008b) for active learning in the
multiple-instance setting (see Section 6.4), and has also been applied to proba-
bilistic sequence models like CRFs (Settles and Craven, 2008).

In theory, the EGL strategy can be applied to any learning problem where
gradient-based training is used. Since discriminative probabilistic models are
usually trained using gradient-based optimization, the “change” imparted to the
model can be measured by the length of the training gradient (i.e., the vector
used to re-estimate parameter values). In other words, the learner should query
the instance x which, if labeled and added to £, would result in the new training
gradient of the largest magnitude. Let V{y(L) be the gradient of the objective
function ¢ with respect to the model parameters 6. Now let V{y(L U (z,y)) be

18

the new gradient that would be obtained by adding the training tuple (x,y) to L.
Since the query algorithm does not know the true label y in advance, we must
instead calculate the length as an expectation over the possible labelings:

Tpar = argglaxZPg(yi]x)HV@(ﬁ U (z, yz>)H>

where || - || is, in this case, the Euclidean norm of each resulting gradient vector.
Note that, at query time, ||[V{y(L)|| should be nearly zero since ¢ converged at
the previous round of training. Thus, we can approximate V/{y(L U (x,y;)) ~
Vio((z,y;)) for computational efficiency, because training instances are usually
assumed to be independent.

The intuition behind this framework is that it prefers instances that are likely
to most influence the model (i.e., have greatest impact on its parameters), regard-
less of the resulting query label. This approach has been shown to work well in
empirical studies, but can be computationally expensive if both the feature space
and set of labelings are very large. Furthermore, the EGL approach can be led
astray if features are not properly scaled. That is, the informativeness of a given
instance may be over-estimated simply because one of its feature values is unusu-
ally large, or the corresponding parameter estimate is larger, both resulting in a
gradient of high magnitude. Parameter regularization (Chen and Rosenfeld, 2000;
Goodman, 2004) can help control this effect somewhat, and it doesn’t appear to
be a significant problem in practice.

3.4 Expected Error Reduction

Another decision-theoretic approach aims to measure not how much the model is
likely to change, but how much its generalization error is likely to be reduced. The
idea it to estimate the expected future error of a model trained using £ U (z, y) on
the remaining unlabeled instances in I/ (which is assumed to be representative of
the test distribution, and used as a sort of validation set), and query the instance
with minimal expected future error (sometimes called risk). One approach is to
minimize the expected 0/1-loss:

U
.173/1 = argminz Pe(yl‘ﬂf) (Zl — P9+(zyl)(:l)|$(u))> :
‘ i u=1

where 61(@¥) refers to the the new model after it has been re-trained with the
training tuple (z,y;) added to £. Note that, as with EGL in the previous section,

19

we do not know the true label for each query instance, so we approximate using
expectation over all possible labels under the current model #. The objective here
is to reduce the expected total number of incorrect predictions. Another, less
stringent objective is to minimize the expected log-loss:

U
Thog = argmin >~ Py(yilw) | =D > Pyetown (y5l2™) log Pyecewn (12™) |,

u=1 j

which is equivalent to reducing the expected entropy over 4. Another interpreta-
tion of this strategy is maximizing the expected information gain of the query z,
or (equivalently) the mutual information of the output variables over x and U.

Roy and McCallum (2001) first proposed the expected error reduction frame-
work for text classification using naive Bayes. Zhu et al. (2003) combined this
framework with a semi-supervised learning approach (Section 7.1), resulting in
a dramatic improvement over random or uncertainty sampling. Guo and Greiner
(2007) employ an “optimistic” variant that biases the expectation toward the most
likely label for computational convenience, using uncertainty sampling as a fall-
back strategy when the oracle provides an unexpected labeling. This framework
has the dual advantage of being near-optimal and not being dependent on the
model class. All that is required is an appropriate objective function and a way to
estimate posterior label probabilities. For example, strategies in this framework
have been successfully used with a variety of models including naive Bayes (Roy
and McCallum, 2001), Gaussian random fields (Zhu et al., 2003), logistic regres-
sion (Guo and Greiner, 2007), and support vector machines (Moskovitch et al.,
2007). In theory, the general approach can be employed not only to minimize loss
functions, but to optimize any generic performance measure of interest, such as
maximizing precision, recall, F;-measure, or area under the ROC curve.

In most cases, unfortunately, expected error reduction is also the most com-
putationally expensive query framework. Not only does it require estimating the
expected future error over U for each query, but a new model must be incre-
mentally re-trained for each possible query labeling, which in turn iterates over
the entire pool. This leads to a drastic increase in computational cost. For non-
parametric model classes such as Gaussian random fields (Zhu et al., 2003), the
incremental training procedure is efficient and exact, making this approach fairly
practical'. For a many other model classes, this is not the case. For example, a
binary logistic regression model would require O(U LG) time complexity simply

I'The bottleneck in non-parametric models generally not re-training, but inference.

20

to choose the next query, where U is the size of the unlabeled pool U/, L is the
size of the current training set £, and G is the number of gradient computations
required by the by optimization procedure until convergence. A classification task
with three or more labels using a MaxEnt model (Berger et al., 1996) would re-
quire O(M?U LG) time complexity, where M is the number of class labels. For a
sequence labeling task using CRFs, the complexity explodes to O(TMTT2ULG),
where 7' is the length of an input sequence. Because of this, the applications of
the expected error reduction framework have mostly only considered simple bi-
nary classification tasks. Moreover, because the approach is often still impractical,
researchers must resort to Monte Carlo sampling from the pool (Roy and McCal-
lum, 2001) to reduce the U term in the previous analysis, or use approximate
training techniques (Guo and Greiner, 2007) to reduce the G term.

3.5 Variance Reduction

Minimizing the expectation of a loss function directly is expensive, and in general
this cannot be done in closed form. However, we can still reduce generaliza-
tion error indirectly by minimizing output variance, which sometimes does have
a closed-form solution. Consider a regression problem, where the learning objec-
tive is to minimize standard error (i.e., squared-loss). We can take advantage of
the result of Geman et al. (1992), showing that a learner’s expected future error
can be decomposed in the following way:

Er [(§ —y)*|lz] = E [(y — Elylz])?]
+ (E¢[j] — Elyla])®
+ E¢ [(5— Ec[9])?]

where E[-| is an expectation over the labeled set £, E[-] is an expectation over
the conditional density P(y|z), and E7 is an expectation over both. Here also
7 is shorthand for the model’s predicted output for a given instance x, while y
indicates the true label for that instance.

The first term on the right-hand side of this equation is noise, i.e., the variance
of the true label y given only x, which does not depend on the model or training
data. Such noise may result from stochastic effects of the method used to obtain
the labels, for example, or because the feature representation is inadequate. The
second term is the bias, which represents the error due to the model class itself,
e.g., if a linear model is used to learn a function that is only approximately lin-
ear. This component of the overall error is invariant given a fixed model class.

21

The third term is the model’s variance, which is the remaining component of the
learner’s squared-loss with respect to the target function. Minimizing the vari-
ance, then, is guaranteed to minimize the future generalization error of the model
(since the learner itself can do nothing about the noise or bias components).
Cohn (1994) and Cohn et al. (1996) present the first statistical analyses of
active learning for regression in the context of a robot arm kinematics problem,
using the estimated distribution of the model’s output 05. They show that this
can be done in closed-form for neural networks, Gaussian mixture models, and
locally-weighted linear regression. In particular, for neural networks the output

variance for some instance = can be approximated by (MacKay, 1992):

1" [8 1oy _
20\ ~ ~ Tl
0y(7) =~ [86’] [80259(5)} [30} Vo' F~ 'V,

where Sy(L) is the squared error of the current model # on the training set L.
In the equation above, the first and last terms are computed using the gradient of
the model’s predicted output with respect to model parameters, written in short-
hand as Vz. The middle term is the inverse of a covariance matrix representing a
second-order expansion around the objective function S with respect to ¢, written
in shorthand as F'. This is also known as the Fisher information matrix (Schervish,
1995), and will be discussed in more detail later. An expression for (57)** can
then be derived, which is the estimated mean output variance across the input
distribution after the model has been re-trained on query = and its correspond-
ing label. Given the assumptions that the model’s prediction for z is fairly good,
that Vz is locally linear (true for most network configurations), and that variance
is Gaussian, variance can be estimated efficiently in closed form so that actual
model re-training is not required; more gory details are given by Cohn (1994).
The variance reduction query selection strategy then becomes:

Ty p = argmin (57)"".
x

Because this equation represents a smooth function that is differentiable with
respect to any query instance x in the input space, gradient methods can be used
to search for the best possible query that minimizes output variance, and there-
fore generalization error. Hence, their approach is an example of query synthesis
(Section 2.1), rather than stream-based or pool-based active learning.

This sort of approach is derived from statistical theories of optimal experi-
mental design, or OED (Federov, 1972; Chaloner and Verdinelli, 1995). A key

22

ingredient of these approaches is Fisher information, which is sometimes written
Z(6) to make its relationship with model parameters explicit. Formally, Fisher
information is the variance of the score, which is the partial derivative of the log-
likelihood function with respect to the model parameters:

2

760)- N [P [Pulyle) oo Yog Po(yla),

where there are /V independent samples drawn from the input distribution. This
measure is convenient because its inverse sets a lower bound on the variance of the
model’s parameter estimates; this result is known as the Cramér-Rao inequality
(Cover and Thomas, 2006). In other words, to minimize the variance over its
parameter estimates, an active learner should select data that maximizes its Fisher
information (or minimizes the inverse thereof). When there is only one parameter
in the model, this strategy is straightforward. But for models of K parameters,
Fisher information takes the form of a /' x K covariance matrix (denoted earlier
as F'), and deciding what exactly to optimize is a bit tricky. In the OED literature,
there are three types of optimal designs in such cases:

e A-optimality minimizes the trace of the inverse information matrix,
e D-optimality minimizes the determinant of the inverse matrix, and

e E-optimality minimizes the maximum eigenvalue of the inverse matrix.

E-optimality doesn’t seem to correspond to an obvious utility function, and
is not often used in the machine learning literature, though there are some excep-
tions (Flaherty et al., 2006). D-optimality, it turns out, is related to minimizing
the expected posterior entropy (Chaloner and Verdinelli, 1995). Since the deter-
minant can be thought of as a measure of volume, the D-optimal design criterion
essentially aims to minimize the volume of the (noisy) version space, with bound-
aries estimated via entropy, which makes it somewhat analogous to the query-by-
committee algorithm (Section 3.2).

A-optimal designs are considerably more popular, and aim to reduce the av-
erage variance of parameter estimates by focusing on values along the diagonal
of the information matrix. A common variant of A-optimal design is to mini-
mize tr(AF~!)—the trace of the product of A and the inverse of the informa-
tion matrix F'—where A is a square, symmetric “reference” matrix. As a special
case, consider a matrix of rank one: A = cc', where c is some vector of length

23

K (i.e., the same length as the model’s parameter vector). In this case we have
tr(AF~!) = ¢" F~lc, and minimizing this value is sometimes called c-optimality.
Note that, if we let ¢ = Vz, this criterion results in the equation for output vari-
ance ag(x) in neural networks defined earlier. Minimizing this variance measure
can be achieved by simply querying on instance z, so the c-optimal criterion can
be viewed as a formalism for uncertainty sampling (Section 3.1).

Recall that we are interested in reducing variance across the input distribution
(not merely for a single point in the instance space), thus the A matrix should en-
code the whole instance space. MacKay (1992) derived such solutions for regres-
sion with neural networks, while Zhang and Oles (2000) and Schein and Ungar
(2007) derived similar methods for classification with logistic regression. Con-
sider letting the reference matrix A = Z;(#), i.e., the Fisher information of the
unlabeled pool of instances U, and letting F' = Z,(6), i.e., the Fisher informa-
tion of some query instance x. Using A-optimal design, we can derive the Fisher
information ratio (Zhang and Oles, 2000):

Ty p = argmin tr (Zy(0)Z,(0) ") .
x

The equation above provides us with a ratio given by the inner product of the two
matrices, which can be interpreted as the model’s output variance across the input
distribution (as approximated by /) that is not accounted for by x. Querying the
instance which minimizes this ratio is then analogous to minimizing the future
output variance once x has been labeled, thus indirectly reducing generalization
error (with respect to /). The advantage here over error reduction (Section 3.4) is
that the model need not be retrained: the information matrices give us an approx-
imation of output variance that simulates retraining. Zhang and Oles (2000) and
Schein and Ungar (2007) applied this sort of approach to text classification using
binary logistic regression. Hoi et al. (2006a) extended this to active text classifica-
tion in the batch-mode setting (Section 6.1) in which a set of queries Q is selected
all at once in an attempt to minimize the ratio between Z;,(6) and Zg(#). Settles
and Craven (2008) have also generalized the Fisher information ratio approach to
probabilistic sequence models such as CRFs.

There are some practical disadvantages to these variance-reduction methods,
however, in terms of computational complexity. Estimating output variance re-
quires inverting a ' X K matrix for each new instance, where K is the number
of parameters in the model 6, resulting in a time complexity of O(U K3), where
U is the size of the query pool U/. This quickly becomes intractable for large K,
which is a common occurrence in, say, natural language processing tasks. Paass

24

and Kindermann (1995) propose a sampling approach based on Markov chains to
reduce the U term in this analysis. For inverting the Fisher information matrix and
reducing the K3 term, Hoi et al. (2006a) use principal component analysis to re-
duce the dimensionality of the parameter space. Alternatively, Settles and Craven
(2008) approximate the matrix with its diagonal vector, which can be inverted in
only O(K) time. However, these methods are still empirically much slower than
simpler query strategies like uncertainty sampling.

3.6 Density-Weighted Methods

A central idea of the estimated error and variance reduction frameworks is that
they focus on the entire input space rather than individual instances. Thus, they
are less prone to querying outliers than simpler query strategies like uncertainty
sampling, QBC, and EGL. Figure 7 illustrates this problem for a binary linear
classifier using uncertainty sampling. The least certain instance lies on the classi-
fication boundary, but is not “representative” of other instances in the distribution,
so knowing its label is unlikely to improve accuracy on the data as a whole. QBC
and EGL may exhibit similar behavior, by spending time querying possible out-
liers simply because they are controversial, or are expected to impart significant
change in the model. By utilizing the unlabeled pool &/ when estimating future
errors and output variances, the estimated error and variance reduction strategies
implicitly avoid these problems. We can also overcome these problems by mod-
eling the input distribution explicitly during query selection.

The information density framework described by Settles and Craven (2008),
and further analyzed in Chapter 4 of Settles (2008), is a general density-weighting
technique. The main idea is that informative instances should not only be those
which are uncertain, but also those which are “representative” of the underlying
distribution (i.e., inhabit dense regions of the input space). Therefore, we wish to
query instances as follows:

B
U

1
Ty = argmax da(z) X (ﬁ ;sim(x,x(“))) :

Here, ¢ 4(x) represents the informativeness of = according to some “base” query
strategy A, such as an uncertainty sampling or QBC approach. The second term
weights the informativeness of x by its average similarity to all other instances
in the input distribution (as approximated by Uf), subject to a parameter [that

25

Figure 7: An illustration of when uncertainty sampling can be a poor strategy for classifi-
cation. Shaded polygons represent labeled instances in £, and circles represent
unlabeled instances in /. Since A is on the decision boundary, it would be
queried as the most uncertain. However, querying B is likely to result in more
information about the data distribution as a whole.

controls the relative importance of the density term. A variant of this might first
cluster / and compute average similarity to instances in the same cluster.

This formulation was presented by Settles and Craven (2008), however it is
not the only strategy to consider density and representativeness in the literature.
McCallum and Nigam (1998) also developed a density-weighted QBC approach
for text classification with naive Bayes, which is a special case of information
density. Fujii et al. (1998) considered a query strategy for nearest-neighbor meth-
ods that selects queries that are (i) least similar to the labeled instances in L,
and (i1) most similar to the unlabeled instances in /. Nguyen and Smeulders
(2004) proposed a density-based approach that first clusters instances and tries to
avoid querying outliers by propagating label information to instances in the same
cluster. Similarly, Xu et al. (2007) use clustering to construct sets of queries for
batch-mode active learning (Section 6.1) with SVMs. Reported results in all these
approaches are superior to methods that do not consider density or representative-
ness measures. Furthermore, Settles and Craven (2008) show that if densities can
be pre-computed efficiently and cached for later use, the time required to select
the next query is essentially no different than the base informativeness measure
(e.g., uncertainty sampling). This is advantageous for conducting active learning
interactively with oracles in real-time.

4 Analysis of Active Learning

This section discusses some of the empirical and theoretical evidence for how and
when active learning approaches can be successful.

26

4.1 Empirical Analysis

An important question is: “does active learning work?” Most of the empirical
results in the published literature suggest that it does (e.g., the majority of papers
in the bibliography of this survey). Furthermore, consider that software companies
and large-scale research projects such as CiteSeer, Google, IBM, Microsoft, and
Siemens are increasingly using active learning technologies in a variety of real-
world applications®. Numerous published results and increased industry adoption
seem to indicate that active learning methods have matured to the point of practical
use in many situations.

As usual, however, there are caveats. In particular, consider that a training set
built in cooperation with an active learner is inherently tied to the model that was
used to generate it (i.e., the class of the model selecting the queries). Therefore,
the labeled instances are a biased distribution, not drawn i.i.d. from the underlying
natural density. If one were to change model classes—as we often do in machine
learning when the state of the art advances—this training set may no longer be as
useful to the new model class (see Section 6.6 for more discussion on this topic).
Somewhat surprisingly, Schein and Ungar (2007) showed that active learning can
sometimes require more labeled instances than passive learning even when us-
ing the same model class, in their case logistic regression. Guo and Schuurmans
(2008) found that off-the-shelf query strategies, when myopically employed in a
batch-mode setting (Section 6.1) are often much worse than random sampling.
Gasperin (2009) reported negative results for active learning in an anaphora res-
olution task. Baldridge and Palmer (2009) found a curious inconsistency in how
well active learning helps that seems to be correlated with the proficiency of the
annotator (specifically, a domain expert was better utilized by an active learner
than a domain novice, who was better suited to a passive learner).

Nevertheless, active learning does reduce the number of labeled instances re-
quired to achieve a given level of accuracy in the majority of reported results
(though, admittedly, this may be due to the publication bias). This is often true
even for simple query strategies like uncertainty sampling. Tomanek and Ols-
son (2009) report in a survey that 91% of researchers who used active learning
in la